Product User Guide and Specification (PUGS) – Main document

C3S_312a_Lot6_IUP-UB – Greenhouse Gases

Issued by: Michael Buchwitz, University of Bremen,
Institute of Environmental Physics (IUP)

Date: 20/10/2017

Ref: C3S_D312a_Lot6.3.1.5-v1_PUGS_MAIN_v1.3

Official reference number service contract: 2016/C3S_312a_Lot6_IUP-UB/SC1
This document has been produced in the context of the Copernicus Climate Change Service (C3S).
The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All information in this document is provided “as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission and the European Centre for Medium-Range Weather Forecasts has no liability in respect of this document, which is merely representing the authors view.
Contributors

INSTITUTE OF ENVIRONMENTAL PHYSICS (IUP), UNIVERSITY OF BREMEN, BREMEN, GERMANY (IUP)
M. Buchwitz
M. Reuter
O. Schneising-Weigel

SRON NETHERLANDS INSTITUTE FOR SPACE RESEARCH, UTRECHT, THE NETHERLANDS (SRON)
I. Aben
R. G. Detmers
O. P. Hasekamp

UNIVERSITY OF LEICESTER, LEICESTER, UK (UoL)
H. Boesch
J. Anand

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), LABORATOIRE DE METEOROLOGIE DYNAMIQUE (LMD), PALAISEAU, FRANCE (LMD/CNRS)
C. Crevoisier
R. Armante
Table of Contents

History of modifications 6
Related documents 7
Acronyms 8
General definitions 11
Scope of document 12
Executive summary 13

1. Overview data products and instruments 17
 1.1 Column-average mixing ratios of CO₂ and CH₄ (XCO₂ and XCH₄) 18
 1.1.1 Overview 18
 1.1.2 Instruments 18
 1.1.3 XCO₂ 20
 1.1.4 XCH₄ 22
 1.1.5 List of XCO₂ and XCH₄ data products 24
 1.2 Mid-tropospheric mixing ratios of CO₂ and CH₄ 38
 1.2.1 Overview 38
 1.2.2 Instruments 38
 1.2.3 CO₂ 39
 1.2.4 CH₄ 42
 1.2.5 List of mid-tropospheric CO₂ and CH₄ data products 45

2. Level 2 XCO₂ and XCH₄ data products 46
 2.1 Product description 46
 2.1.1 Common parameters 47
 2.1.2 How to use the averaging kernels (AK) ? 52
 2.1.3 Algorithm specific parameters 62
 2.2 Target requirements 62
 2.3 Data usage information 62

3. Level 3 XCO₂ and XCH₄ data products 63
 3.1 Product description 63
 3.1.1 Obs4MIPS XCO₂ product format 66
 3.1.2 Obs4MIPS XCH₄ product format 68
 3.2 Target requirements 69
 3.3 Data usage information 69
4. Level 2 mid-tropospheric CO$_2$ and CH$_4$ data products
 4.1 Product description
 4.2 Target requirements
 4.3 Data usage information

5. PUGS for existing GHG-CCI products
 5.1 CO2_SCI_BESD product
 5.2 CO2_SCI_WFMD and CH4_SCI_WFMD products
 5.3 CH4_SCI_IMAP product

6. Data quality overview

7. Data access information

References

8. Acknowledgement

9. List of ANNEXes
 9.1 ANNEX A: PUGS for products CO2_GOS_OCFP, CH4_GOS_OCFP and CH4_OCPR
 9.2 ANNEX B: PUGS for products CO2_GOS_SRFP and CH4_GOS_SRFP
 9.3 ANNEX C: PUGS for product CH4_GOS_SRPR
 9.4 ANNEX D: PUGS for products XCO2_EMMA and XCH4_EMMA
 9.5 ANNEX E: PUGS for IASI CO$_2$ and CH$_4$ and AIRS CO$_2$ products
History of modifications

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description of modification</th>
<th>Chapters / Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>21-September-2017</td>
<td>New document</td>
<td>All</td>
</tr>
<tr>
<td>1.1</td>
<td>5-October-2017</td>
<td>2 figures corrected Sections 5.2 and 5.3 on WFMD products PUGSs merged to single Sect. 5.2</td>
<td>Figs. 19 & 20 Sect. 5.2 and 5.3</td>
</tr>
<tr>
<td>1.2</td>
<td>6-October-2017</td>
<td>2 figures corrected. Information added related to the quality of the IASI CO₂ products.</td>
<td>Figs. 25 & 26 Sect. 6</td>
</tr>
<tr>
<td>1.3</td>
<td>20-October-2017</td>
<td>KPI replaced by TR. Update of references.</td>
<td>All</td>
</tr>
</tbody>
</table>
Related documents

<table>
<thead>
<tr>
<th>Reference ID</th>
<th>Document</th>
</tr>
</thead>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRS</td>
<td>Atmospheric Infrared Sounder</td>
</tr>
<tr>
<td>AMSU</td>
<td>Advanced Microwave Sounding Unit</td>
</tr>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Basis Document</td>
</tr>
<tr>
<td>BESD</td>
<td>Bremen optimal ESTimation DOAS</td>
</tr>
<tr>
<td>CAR</td>
<td>Climate Assessment Report</td>
</tr>
<tr>
<td>C3S</td>
<td>Copernicus Climate Change Service</td>
</tr>
<tr>
<td>CCDAS</td>
<td>Carbon Cycle Data Assimilation System</td>
</tr>
<tr>
<td>CCI</td>
<td>Climate Change Initiative</td>
</tr>
<tr>
<td>CDR</td>
<td>Climate Data Record</td>
</tr>
<tr>
<td>CDS</td>
<td>(Copernicus) Climate Data Store</td>
</tr>
<tr>
<td>CMUG</td>
<td>Climate Modelling User Group (of ESA’s CCI)</td>
</tr>
<tr>
<td>CRG</td>
<td>Climate Research Group</td>
</tr>
<tr>
<td>D/B</td>
<td>Data base</td>
</tr>
<tr>
<td>DOAS</td>
<td>Differential Optical Absorption Spectroscopy</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium Range Weather Forecasting</td>
</tr>
<tr>
<td>ECV</td>
<td>Essential Climate Variable</td>
</tr>
<tr>
<td>EMMA</td>
<td>Ensemble Median Algorithm</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>Environmental Satellite (of ESA)</td>
</tr>
<tr>
<td>EO</td>
<td>Earth Observation</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>European Organisation for the Exploitation of Meteorological Satellites</td>
</tr>
<tr>
<td>FCDR</td>
<td>Fundamental Climate Data Record</td>
</tr>
<tr>
<td>FoM</td>
<td>Figure of Merit</td>
</tr>
<tr>
<td>FP</td>
<td>Full Physics retrieval method</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform InfraRed</td>
</tr>
<tr>
<td>FTS</td>
<td>Fourier Transform Spectrometer</td>
</tr>
<tr>
<td>GCOS</td>
<td>Global Climate Observing System</td>
</tr>
<tr>
<td>GEO</td>
<td>Group on Earth Observation</td>
</tr>
<tr>
<td>GEOSS</td>
<td>Global Earth Observation System of Systems</td>
</tr>
<tr>
<td>GHG</td>
<td>GreenHouse Gas</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment</td>
</tr>
<tr>
<td>GMES</td>
<td>Global Monitoring for Environment and Security</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>GOSAT</td>
<td>Greenhouse Gases Observing Satellite</td>
</tr>
<tr>
<td>IASI</td>
<td>Infrared Atmospheric Sounding Interferometer</td>
</tr>
<tr>
<td>IMAP-DOAS (or IMAP)</td>
<td>Iterative Maximum A posteriori DOAS</td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel in Climate Change</td>
</tr>
<tr>
<td>IUP</td>
<td>Institute of Environmental Physics (IUP) of the University of Bremen, Germany</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace Exploration Agency</td>
</tr>
<tr>
<td>JCGM</td>
<td>Joint Committee for Guides in Metrology</td>
</tr>
<tr>
<td>L1</td>
<td>Level 1</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2</td>
</tr>
<tr>
<td>L3</td>
<td>Level 3</td>
</tr>
<tr>
<td>L4</td>
<td>Level 4</td>
</tr>
<tr>
<td>LMD</td>
<td>Laboratoire de Météorologie Dynamique</td>
</tr>
<tr>
<td>MACC</td>
<td>Monitoring Atmospheric Composition and Climate, EU GMES project</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NetCDF</td>
<td>Network Common Data Format</td>
</tr>
<tr>
<td>NDACC</td>
<td>Network for the Detection of Atmospheric Composition Change</td>
</tr>
<tr>
<td>NIES</td>
<td>National Institute for Environmental Studies</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infra Red</td>
</tr>
<tr>
<td>NLIS</td>
<td>LMD/CNRS neuronal network mid/upper tropospheric CO2 and CH4 retrieval algorithm</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>Obs4MIPs</td>
<td>Observations for Climate Model Intercomparisons</td>
</tr>
<tr>
<td>OCO</td>
<td>Orbiting Carbon Observatory</td>
</tr>
<tr>
<td>OE</td>
<td>Optimal Estimation</td>
</tr>
<tr>
<td>PBL</td>
<td>Planetary Boundary Layer</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PR</td>
<td>(light path) PROxy retrieval method</td>
</tr>
<tr>
<td>PVIR</td>
<td>Product Validation and Intercomparison Report</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>REQ</td>
<td>Requirement</td>
</tr>
<tr>
<td>RMS</td>
<td>Root-Mean-Square</td>
</tr>
<tr>
<td>RTM</td>
<td>Radiative transfer model</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY</td>
</tr>
<tr>
<td>SCIATRAN</td>
<td>SCIAMACHY radiative transfer model</td>
</tr>
<tr>
<td>SRON</td>
<td>SRON Netherlands Institute for Space Research</td>
</tr>
<tr>
<td>SWIR</td>
<td>Short Wava Infra Red</td>
</tr>
<tr>
<td>TANSO</td>
<td>Thermal And Near infrared Sensor for carbon Observation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>TANSO-FTS</td>
<td>Fourier Transform Spectrometer on GOSAT</td>
</tr>
<tr>
<td>TBC</td>
<td>To be confirmed</td>
</tr>
<tr>
<td>TBD</td>
<td>To be defined / to be determined</td>
</tr>
<tr>
<td>TCCON</td>
<td>Total Carbon Column Observing Network</td>
</tr>
<tr>
<td>TIR</td>
<td>Thermal Infra Red</td>
</tr>
<tr>
<td>TR</td>
<td>Target Requirements</td>
</tr>
<tr>
<td>TRD</td>
<td>Target Requirements Document</td>
</tr>
<tr>
<td>WFM-DOAS (or WFMD)</td>
<td>Weighting Function Modified DOAS</td>
</tr>
<tr>
<td>UoL</td>
<td>University of Leicester, United Kingdom</td>
</tr>
<tr>
<td>URD</td>
<td>User Requirements Document</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>Y2Y</td>
<td>Year-to-year (bias variability)</td>
</tr>
</tbody>
</table>
General definitions

Table 1 lists some general definitions relevant for this document.

Table 1: General definitions.

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCO₂</td>
<td>Column-average dry-air mixing ratio (mole fraction) of CO₂</td>
</tr>
<tr>
<td>XCH₄</td>
<td>Column-average dry-air mixing ratio (mole fraction) of CH₄</td>
</tr>
<tr>
<td>L1</td>
<td>Level 1 satellite data product: geolocated radiance (spectra)</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2 satellite-derived data product: Here: CO₂ and CH₄ information for each ground-pixel</td>
</tr>
<tr>
<td>L3</td>
<td>Level 3 satellite-derived data product: Here: Gridded CO₂ and CH₄ information, e.g., 5 deg times 5 deg, monthly</td>
</tr>
<tr>
<td>L4</td>
<td>Level 4 satellite-derived data product: Here: Surface fluxes (emission and/or uptake) of CO₂ and CH₄</td>
</tr>
</tbody>
</table>
Scope of document

This document is the Product User Guide and Specification (PUGS) for the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/) component as covered by project C3S_312a_Lot6 led by University of Bremen, Germany.

Within this project, satellite-derived atmospheric carbon dioxide (CO$_2$) and methane (CH$_4$) Essential Climate Variable (ECV) data products have been generated and delivered to ECMWF for inclusion into the Copernicus Climate Data Store (CDS), from where users can access these data products and the corresponding documentation.

These satellite-derived data products are:

- Column-average dry-air mixing ratios (mole fractions) of CO$_2$ and CH$_4$, denoted XCO$_2$ (in parts per million, ppm) and XCH$_4$ (in parts per billion, ppb), respectively.
- Mid/upper tropospheric mixing ratios of CO$_2$ (in ppm) and CH$_4$ (in ppb).

Requirements on data quality are formulated in the corresponding Target Requirement Document (TRD) ([TRD GHG, 2017](https://climate.copernicus.eu/)) (Reference ID D4).

The main purpose of this document is to describe the satellite-derived CO$_2$ and CH$_4$ greenhouse gas (GHG) ECV data products for users of these data products.

Note that this document does not contain a description of the retrieval algorithms which have been used to generate these products. These algorithms are described in a separate document (Reference ID D5): Algorithm Theoretical Basis Document (ATBD) ([ATBD GHG, 2017](https://climate.copernicus.eu/)).

Note also that this document does not contain detailed validation results. Detailed data quality and validation results are reported in a separate document (Reference ID D6): Product Quality Assessment Report (PQAR) ([PQAR GHG, 2017](https://climate.copernicus.eu/)).
Executive summary

In this document the satellite-derived atmospheric carbon dioxide (CO₂) and methane (CH₄) Climate Data Record (CDR) data products are described as generated via the C3S_312a_Lot6 project of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/).

These satellite-derived data products are:
- Column-averag dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm) and XCH₄ (in parts per billion, ppb), respectively.
- Mid/upper tropospheric mixing ratios of CO₂ (in ppm) and CH₄ (in ppb).

These data products are generated from the satellite instruments SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT (XCO₂ and XCH₄ products) and AIRS and IASI (mid/upper troposphere products).

All data products are available as Level 2 (individual ground pixels) products in NetCDF format. The XCO₂ (Figure 1) and XCH₄ (Figure 2) Level 2 products are available for individual sensors but also as merged multi-sensor products. In addition, also merged Level 3 (i.e., gridded) products in OBS4MIPS format are available for the XCO₂ and XCH₄ products.

CO₂ and CH₄ are important climate-relevant atmospheric gases, so-called greenhouse gases (GHG). Because of their important role for climate they are classified as Essential Climate Variables (ECVs). The ECV GHG as formulated by GCOS (Global Climate Observing System) is defined as: “Retrievals of greenhouse gases, such as CO₂ and CH₄, of sufficient quality to estimate regional sources and sinks” (GCOS-154). This definition contains already the main application of these atmospheric data products, namely to use them (in combination with appropriate modelling) to obtain (improved) information on their (primarily surface) sources and sinks.

Both gases, CO₂ and CH₄, have a long lifetime in the atmosphere. As a consequence of this fact and related human emissions, the atmospheric concentrations of these gases are relatively high (about 400 ppm for CO₂ and 1.8 ppm for CH₄) compared to other atmospheric trace gases. As a result of this even a moderate to strong (surface) source or sink typically only results in a relatively small local or regional change (enhancement or depletion relative to the surrounding region) in their vertical columns or their mid/upper tropospheric concentration. The observational requirements are therefore very demanding in particular with respect to random and systematic errors and stability.

Because of their long lifetime and atmospheric transport, elevated (or depleted) atmospheric CO₂ and CH₄ concentrations can be higher (or lower) relative to the background far away from the surface source (or sink), which has emitted (or taken up) these atmospheric gases. In order to obtain source/sink information from the atmospheric observations it is therefore required to take atmospheric transport (and in particular for methane also atmospheric chemistry) into account and to consider the exact time and location of the atmospheric observations. As a consequence, the most relevant data products are the Level 2 (L2) products, which contain detailed information (time, location, etc.) for each individual satellite ground pixel. The requirements as formulated in the
Target Requirement Document (*TRD GHG, 2017*) are, therefore, mostly L2 requirements. However, for XCO₂ and XCH₄ also (gridded) Level 3 (L3) products have been generated (in OBS4MIPS format).

The C3S_312a_Lot6 project is essentially the (pre-)operational continuation of the research and development (R&D) pre-cursor project GHG-CCI (http://www.esa-ghg-cci.org/) of ESA’s Climate Change Initiative (CCI). The main goal of the C3S_312a_Lot6 project is to extend (in time) the data base of GHG-CCI pre-cursor data products. The first C3S_312a_Lot6 data set covers the time period 2003-2016.

This document is the MAIN PUGS document. It provides an overview about the products by describing the data format and content which is relevant for all users. However, each product may also contain additional – typically algorithm specific – information, which may be useful for certain applications. Details on each product are provided in separate ANNEXes:

- **ANNEX A**: PUGS for products CO₂_GOS_OCFP, CH₄_GOS_OCFP, CH₄_OCPR (University of Leicester’s GOSAT products)
- **ANNEX B**: PUGS for products CO₂_GOS_SRFP, CH₄_GOS_SRFP (SRON’s “full physics” GOSAT products)
- **ANNEX C**: PUGS for product CH₄_GOS_SRPR (SRON’s “proxy” GOSAT XCH₄ product)
- **ANNEX D**: PUGS for products XCO₂_EMMA, XCH₄_EMMA (University of Bremen’s merged Level 2 products)
- **ANNEX E**: PUGS for IASI CO₂ and CH₄ products (LMD/CNRS’s IASI products)
- **ANNEX F**: PUGS for OBS4MIPS XCO₂ and XCH₄ products (University of Bremen’s merged Level 3 products)

Finally a warning:

The data products have been generated as carefully as possible including appropriate quality filtering to (automatically) remove “bad data”. Nevertheless, these are real data from real instruments and they contain (instrument related) features such as noise and systematic errors. The products have been validated by comparison with (mostly) ground-based observations (see *PQAR GHG, 2017*) but these reference observations are sparse and do not cover all observational and geophysical conditions. Using these data products for scientific or other applications requires care and is not trivial.

Note in particular that the SCIAMACHY XCH₄ products suffers from detector degradation issues especially after October 2005 resulting in increased scatter and likely also increased systematic error. As a consequence also the merged multi-sensor (i.e., XCH₄_EMMA and XCH₄_OBS4MIPS) methane products suffer from this (see Figure 3). For XCO₂ no degradation has been identified (see Figure 4).
Figure 1 - Overview of the C3S XCO₂ products during 2003-2016 in terms of global maps and time series. Note that the same data are also shown in Figure 6, where more details are given.

Figure 2 - Overview of the C3S XCH₄ products during 2003-2016 in terms of global maps and time series. Note that the same data are also shown in Figure 8, where more details are given.
Figure 3 – Time series of XCH₄ around Lamont, Oklahoma, USA (+/- 1°). Shown is product XCH₄_EMMA, i.e., the new C3S merged multi-sensor XCH₄ Level 2 product covering the time period 2003-2016. The time series starts with SCIAMACHY/ENVISAT. TANSO-FTS/GOSAT XCH₄ is added in 2009 and after March 2010 the product only contains GOSAT data. As can be seen, the scatter (noise) of the SCIAMACHY data is much larger than GOSAT and it can also be seen that the scatter of the SCIAMACHY data increases with time. This needs to be considered when using this product (or other methane products based on SCIAMACHY) for scientific or other applications.

Figure 4 – As Figure 3 but for product XCO2_EMMA.
1. Overview data products and instruments

In this section an overview of the data products - specified in terms of variable, its property, processing level(s) and instrument(s) - is given.

The data products are (see also Buchwitz et al., 2013b, 2016, 2017):
- Column-average dry-air mixing ratios (mole fractions) of CO2 and CH4, denoted XCO2 (in parts per million, ppm) and XCH4 (in parts per billion, ppb).
- Mid/upper tropospheric mixing ratios of CO2 and CH4.

Carbon dioxide and methane are important atmospheric greenhouse gases (e.g., IPCC 2013) but despite their importance our knowledge on their various and variable natural and anthropogenic sources and sinks has significant gaps (e.g., IPCC 2013; Ciais et al., 2014; 2015; Kirschke et al., 2013; Nisbet et al., 2014, and references given therein). A purpose of the satellite data products described in this document is to contribute to enhancing our knowledge on the CO2 and CH4 sources and sinks (via appropriate (inverse) modelling).

Carbon dioxide and methane are so-called Essential Climate Variables (ECVs) and the need to monitor them has been clearly identified including the definition of key requirements (e.g., GCOS-154, GCOS-200). In recent years several satellite-derived ECV data products have been generated in particular in the framework of the Climate Change Initiative (CCI) of ESA (e.g., Hollmann et al., 2013) including CO2 and CH4 (e.g., Buchwitz et al., 2013a, 2016, 2017).

Previous version of these satellite-derived CO2 and CH4 data products have been used for a number of (primarily scientific) applications, e.g.,
- to improve our knowledge on the various natural and anthropogenic (surface) sources and sinks of these important greenhouse gases (GHG) (see, e.g., Alexe et al., 2015; Bergamaschi et al., 2015; Chevallier et al., 2014, 2016a, 2016b; Cressot et al, 2014; Detmers et al., 2015; Guerlet et al., 2013; Houweling et al., 2015; McNorton et al., 2016; Pandey et al., 2016; Reuter et al., 2014b, 2017; Schneising et al., 2014b; Turner et al., 2015, 2016, and references given therein)
- to monitor the global distribution of CO2 and CH4 (e.g., Buchwitz et al., 2007, 2016b; Schneising et al., 2011; Frankenberg et al., 2011; Massart et al., 2016)
- to improve our knowledge on emission ratios, e.g., for biomass burning (e.g., Ross et al., 2013; Parker et al., 2016)
- for comparisons with (chemistry) climate models (e.g., Shindell et al., 2013; Hayman et al., 2014; Lauer et al., 2017) and other models (e.g., Schneising et al., 2014a; Parker et al., 2016)

In the following sub-sections an overview about the satellite-derived CO2 and CH4 data products is given.
1.1 Column-average mixing ratios of CO₂ and CH₄ (XCO₂ and XCH₄)

1.1.1 Overview

Satellite radiance observations in the Near Infrared / Short Wave Infrared (NIR/SWIR) spectral region in nadir (downlooking) observation viewing mode are sensitive to atmospheric CO₂ and CH₄ concentration changes with good sensitivity down to the Earth’s surface (because solar radiation reflected at the Earth’s surface is observed). These measurements permit to obtain “total column information” but do not permit to obtain (detailed) information on the vertical profiles of CO₂ and CH₄. The CO₂ and CH₄ products derived from these satellites are column-averaged dry-air mixing ratios (more precisely: mole fractions) of CO₂ and CH₄ denoted XCO₂ (e.g., in ppm) and XCH₄ (e.g., in ppb).

In the following, several satellite instruments are shortly described which are used / can be used to generate XCO₂ and/or XCH₄ data products.

1.1.2 Instruments

The first C3S data set has been derived from the satellite instruments SCIAMACHY on ENVISAT and TANSO-FTS onboard GOSAT, which are shortly described in the following.

Additional satellites are also shortly mentioned, which are planned to be used for future versions of our data products.

1.1.2.1 SCIAMACHY/ENVISAT

SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) was a spectrometer on ESA’s ENVISAT satellite (2002-2012). SCIAMACHY (Burrows et al., 2005; Bovensmann et al., 1999) covers the spectral region from the ultra-violet to the SWIR spectral region (240 nm - 2380 nm) at moderate spectral resolution (0.2 nm - 1.5 nm) and observes the Earth’s atmosphere in various viewing geometries (nadir, limb and solar and lunar occultation). For a good general overview on SCIAMACHY see also https://en.wikipedia.org/wiki/SCIAMACHY. SCIAMACHY permits the retrieval of XCO₂ (e.g., Reuter et al., 2011; Schneising et al., 2011) and XCH₄ (e.g., Schneising et al., 2011; Frankenberger et al., 2011) from the appropriate spectral regions in the SWIR (around 1.6 µm) and the NIR (O₂ A-band at 760 nm used to obtain the dry-air column using the know dry-air mixing ratio of atmospheric oxygen). The ground pixel size is typically 30 km along track times 60 km across track and the swath width is about 960 km. There are no across-track gaps between the ground pixels but there are gaps along-track as SCIAMACHY operates only part of the time (approx. 50%) in nadir observation mode.
1.1.2.2 TANSO-FTS/GOSAT

TANSO-FTS is a Fourier-Transform-Spectrometer (FTS) onboard the Japanese GOSAT satellite (Kuze et al., 2009, 2014, 2016). The Greenhouse Gases Observing Satellite "IBUKI" (GOSAT) is the world's first spacecraft in orbit dedicated to measure the concentrations of carbon dioxide and methane from space. The spacecraft was launched successfully on January 23, 2009, and has been operating properly since then. GOSAT covers the relevant CO2, CH4 and O2 absorption bands in the NIR and SWIR spectral region as needed for accurate XCO2 and XCH4 retrieval (in addition GOSAT also covers a large part of the Thermal Infrared (TIR) spectral region). The spectral resolution of TANSO-FTS is much higher compared to SCIAMACHY and also the ground pixels are smaller (10 km compared to several 10 km for SCIAMACHY). However, in contrast to SCIAMACHY, the GOSAT scan pattern consists of non-consecutive individual ground pixels, i.e., the scan pattern is not gap-free. For a good general overview about GOSAT see also http://www.gosat.nies.go.jp/en/.

1.1.2.3 OCO-2

NASA’s Orbiting Carbon Observatory 2 (OCO-2) mission (Crisp et al., 2004; Boesch et al., 2011) has been successfully launched in July 2014. The OCO-2 Project primary science objective is to collect the first space-based measurements of atmospheric carbon dioxide with the precision, resolution and coverage needed to characterize its sources and sinks and quantify their variability over the seasonal cycle. During its two-year mission, OCO-2 will fly in a sun-synchronous, near-polar orbit with a group of Earth-orbiting satellites with synergistic science objectives whose ascending node crosses the equator near 13:30 hours Mean Local Time (MLT). Near-global coverage of the sunlit portion of Earth is provided in this orbit over a 16-day (233-revolution) repeat cycle. OCO-2’s single instrument incorporates three high-resolution grating spectrometers, designed to measure the near-infrared absorption of reflected sunlight by carbon dioxide and molecular oxygen. OCO-2 covers similar spectral bands as SCIAMACHY and GOSAT but OCO-2 has much smaller ground pixels (km scale) but the swath width is much smaller (approx. 10 km) compared to SCIAMACHY. OCO-2 delivers XCO2 but not XCH4. Details on OCO-2 are also given on https://oco.jpl.nasa.gov/.

1.1.2.4 TanSat

The Chinese TanSat satellite (https://en.wikipedia.org/wiki/TanSat) has been successfully launched in December 2016. The TanSat satellite and instrument is very similar as OCO-2. As OCO-2, TanSat delivers XCO2 but not XCH4. At the time of writing no details on the achieved in-orbit XCO2 performance of TanSat is available.

1.1.2.5 Sentinel-5-Precursor (SSP)

ESA’s Sentinel-5-Precursor (SSP) mission (Veefkind et al, 2012) is scheduled for launch in mid 2017. SSP will permit XCH4 retrievals (Butz et al., 2012) at about 7 km and using a wide swath of about 2600 km. Details on SSP can also be found on https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-5P.
1.1.2.6 Other instruments

Several other satellites are expected to be launched in the future, e.g., the GOSAT follow-on GOSAT-2 for XCO₂ and XCH₄, the active laser-based mission MERLIN (Methane Remote Sensing Lidar Mission, see https://de.wikipedia.org/wiki/Merlin_(Satellit)) for XCH₄ and NASA’s recently approved geostationary GeoCARB mission. It can also be expected that in the future other satellites will be launched which permit also to obtain detailed global information on anthropogenic CO₂ emissions (e.g., Ciais et al., 2015), for example a satellite like CarbonSat (Bovenmann et al., 2010; Buchwitz et al., 2013b; Pillai et al., 2016) or even a CarbonSat-like constellation (Velazco et al., 2011).

1.1.3 XCO₂

As explained, XCO₂ is the column-averaged dry-air mixing ratio (mole fraction) of atmospheric CO₂. A XCO₂ value of, for example, 400 ppm at a given location means that 400 CO₂ molecules are present in the atmosphere above that location per one million air molecules excluding water molecules.

XCO₂ can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Cogan et al., 2011; Reuter et al., 2011; 2013; Schneising et al., 2011; Yoshida et al., 2013). These products have been validated using Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2015) XCO₂ ground based observations (e.g., Dils et al., 2014).

In this document the latest versions of these data products are described.

Figure 5 shows time series of satellite-derived XCO₂. As can be seen, XCO₂ is increasing by about 2 ppm/year primarily due to burning of fossil fuels and shows a pronounced seasonal cycle, primarily due to uptake and release of CO₂ by the terrestrial biosphere.

Figure 6 shows maps and time series for two of these products.
Figure 5 – Satellite-derived northern hemispheric XCO₂ time series. Shown are four time series, each corresponding to one of the four individual satellite sensor Level 2 XCO₂ products, which are described in this document.

Figure 6 - Maps of XCO₂ product CO2_SCI_BESD (top, for year 2003) and product CO2_GOS_OCFP (bottom, for year 2016) and northern hemispheric time series (middle).
1.1.4 XCH₄

As explained, XCH₄ is the column-averaged dry-air mixing ratio (mole fraction) of atmospheric CH₄. A XCH₄ value of, for example, 1800 ppb at a given location means that 1800 CH₄ molecules are present in the atmosphere above that location per one billion air molecules excluding water molecules.

XCH₄ can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Frankenberg et al., 2011; Schneising et al., 2011; Parker et al., 2011; Scheper et al., 2012; Yoshida et al., 2013). These products have been validated using Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2015) XCH₄ ground based observations (e.g., Dils et al., 2014).

In this document the latest versions of these data products are described.

As an example, Figure 7 shows time series of satellite-derived XCH₄. As can be seen, XCH₄ is increasing since 2007 by about 7 ppb/year. The reason for this is not entirely clear (several potential reasons are discussed in the scientific literature).

Figure 8 shows maps and time series for two of these products.
Figure 7 – Satellite-derived northern hemispheric XCH$_4$ time series. Shown are six time series, each corresponding to one of the six individual satellite sensor Level 2 XCH$_4$ products, which are described in this document.

Figure 8 - Maps of XCH$_4$ product CH4_SCI_WFMD (top, 2003) and product CH4_GOS_OCPR (bottom, 2016) and northern hemispheric time series (middle).
1.1.5 List of XCO₂ and XCH₄ data products

Table 2 and Table 3 list the XCO₂ and XCH₄ data products, respectively.

As can be seen from Table 2, for each individual sensor Level 2 XCO₂ product two products have been generated using two different retrieval algorithms (OCFP is University of Leicester’s Full Physics (FP) algorithm and SRFP is SRON’s retrieval algorithm, also known as RemoTeC).

Products with comment « Existing GHG-CCI product » are the latest versions of Level 2 products, which have been generated in the framework of the GHG-CCI project (http://www.esa-ghg-cci.org/). They are available via the C3S CDS but are also available from the GHG-CCI website (http://www.esa-ghg-cci.org/) including documentation. They are used within project C3S_312a_Lot6 to generate the merged Level 2 (“EMMA”) and Level 3 (“OBS4MIPS”) products.

Table 2 - Overview XCO₂ data products.

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Level</th>
<th>Sensor(s)</th>
<th>(Planned) Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCO2_EMMA</td>
<td>2</td>
<td>Merged SCIAMACHY & GOSAT</td>
<td>Oct. 2017: 2003-2016</td>
<td>Generated using the individual sensor Level 2 products listed above but also the operational GOSAT XCO₂ Level 2 product generated at NIES in Japan made available via the GOSAT Data Archive Service (GDAS)</td>
</tr>
</tbody>
</table>
As can be seen from Table 3, for each individual sensor Level 2 XCH₄ product four products will be generated from GOSAT using four different retrieval algorithms using two « Full Physics » (FP) and two « Proxy » (PR) algorithms. For a discussion of FP versus PR algorithms see also, for example, Schepers et al., 2012. Each type of algorithm has different advantages and disadvantages. Typically, the PR products contain more data and therefore somewhat better spatio-temporal coverage (as quality filtering can be less strict) but the PR algorithms rely on a CO₂ model to correct for XCO₂ variations. FP products contain less data points but the advantage of this product is that it is independent of a CO₂ model.

Table 3 - Overview XCH₄ data products.

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Level</th>
<th>Sensor(s)</th>
<th>(Planned) Availability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCH4_EMMA</td>
<td>2</td>
<td>Merged SCIAMACHY & GOSAT</td>
<td>Oct. 2017: 2003-2016</td>
<td>Generated using the individual sensor Level 2 products listed above but also the operational GOSAT XCH₄ Level 2 product generated at NIES in Japan made available via the GOSAT Data Archive Service (GDAS)</td>
</tr>
</tbody>
</table>
On the following pages maps of these products are shown so that users can see how a product « looks like ».

Figure 9 shows product CO2_SCI_BESD for January to June 2003 (top) and July to December 2003 (bottom) gridded at 1°x1°. As can be seen, only data over land are available. Gaps over land are due to clouds and for other reasons (e.g., solar zenith angle to large or due to too high aerosol load).

Figure 10 shows the same maps but for product CO2_SCI_WFMD. As can be seen, the data coverage of this product is somewhat better compared to product CO2_SCI_BESD (but validation indicates that this product is of somewhat lower quality in terms of random and systematic error).

Figure 11 shows product CO2_GOS_OCFP for January to June 2016 (top) and July to December 2016 (bottom) also gridded at 1°x1°. As can be seen – compared to the SCIAMACHY XCO₂ products - also data over ocean are available but the land coverage is sparser due to the GOSAT sampling pattern and its smaller ground pixel size.

Figure 12 shows the same maps but for product CO2_GOS_SRFP. As can be seen, this product is similar but not exactly identical compared to product CO2_GOS_OCFP.

Figure 13 shows product CH4_SCI_WFMD for January to June 2003 (top) and July to December 2003 (bottom) gridded at 1°x1°.

Figure 14 shows the same maps but for product CH4_SCI_IMAP. As can be seen, only data over land are available compared to product CH4_SCI_WFMD. Note however, that product CH4_SCI_WFMD is also only available over land for year 2006 and later years (due to SCIAMACHY detector degradation issues).

Figure 15 shows product CH4_GOS_OCFP for January to June 2016 (top) and July to December 2016 (bottom) gridded at 1°x1°.

Figure 16 shows the same maps but for product CH4_GOS_SRFP. As can be seen, the products are similar but not exactly identical. For example, product CH4_GOS_SRFP contains also data over Antarctica, which is not the case for product CH4_GOS_OCFP.

Figure 17 shows the same maps but for product CH4_GOS_OCFP. This « full physics » product is sparser compared to the corresponding « proxy » product CH4_GOS_OCFP.

Figure 18 shows the same maps but for product CH4_GOS_SRFP. This « full physics » product is sparser compared to the corresponding « proxy » product CH4_GOS_SRFP.
Figure 9 - XCO₂ product CO2_SCI_BESD. Top: January to June 2003. Bottom: July – December 2003.
Figure 10 - XCO$_2$ product CO2_SCI_WFMD. Top: January to June 2003. Bottom: July – December 2003.
Figure 11 - XCO₂ product CO2_GOS_OCFP. Top: January to June 2016. Bottom: July – December 2016.
Figure 12 - XCO₂ product CO₂_GOS_OCPR. Top: January to June 2016. Bottom: July – December 2016.
Figure 13 - XCH₄ product CH4_SCI_WFMD. Top: January to June 2003. Bottom: July – December 2003.
Figure 14 - XCH₄ product CH4_SI_IMAP. Top: January to June 2003. Bottom: July – December 2003.
Figure 15 - XCH₄ product CH4_GOS_OCPR. Top: January to June 2016. Bottom: July – December 2016.
Figure 16 - XCH$_4$ product CH4_GOS_SRPR. Top: January to June 2016. Bottom: July – December 2016.
Figure 17 - XCH₄ product CH4_GOS_OCFP. Top: January to June 2016. Bottom: July – December 2016.
Figure 18 - XCH₄ product CH₄_GOS_SRFP. Top: January to June 2016. Bottom: July – December 2016.
Latitude-time plots of products XCO2_EMMA (Figure 19) and XCH4_EMMA (Figure 20) are shown in the figures below. The discontinuities of the number of observations (« Nobs ») is due to the fact that SCIAMACHY delivers more data than GOSAT. The additional discontinuity of « Uncertainty » of product XCH4_EMMA is due to degradation of SCIAMACHY after October 2005.

Figure 19 – Latitude – time plot of XCO2 product XCO2_EMMA.

Figure 20 – Latitude – time plot of XCH4 product XCH4_EMMA.
1.2 Mid-tropospheric mixing ratios of CO₂ and CH₄

1.2.1 Overview

Satellite radiance observations in the thermal infrared (TIR) spectral region in nadir (downlooking) observation viewing mode are sensitive to atmospheric CO₂ and CH₄ mixing ratio changes in the mid and upper tropospheric region. They can thus be interpreted in terms of integrated mid-tropospheric columns, with typical sensitivity between 5 and 12 km.

In the following, the 2 hyperspectral infrared sounders AIRS and IASI are shortly described.

1.2.2 Instruments

1.2.2.1 AIRS

The Atmospheric Infrared Sounder (AIRS) is a polar orbiting nadir-viewing high-resolution infrared sounder operating in a cross-track-scanning mode. It was launched onboard the EOS Aqua satellite in May 2002, with two operational microwave sounders, AMSU and HSB, and is operational since September 2002. It is a high-spectral resolution, grating multispectral infrared sounder with 2378 channels. Its spectral domain ranges from 650 cm⁻¹ to 2665 cm⁻¹ (15.4 µm and 3.8 µm), with a spectral resolving power of 1200 (i.e., a spectral resolution ranging from 0.5 cm⁻¹ to 2 cm⁻¹). This domain is divided into three spectral bands, from 650 to 1135 cm⁻¹, from 1215 to 1615 cm⁻¹ and from 2180 to 2665 cm⁻¹. AIRS cross-track scanning is 1650 km and covers 70% of the earth every day. The instantaneous field of view (IFOV) is sampled by 3×3 circular pixels whose ground resolution is 13 km at nadir. Measurements from the three instruments are analyzed jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy (1 K per 1 km layer in the troposphere).

1.2.2.2 IASI

The Infrared Atmospheric Sounding Interferometer (IASI) is a high resolution Fourier Transform Spectrometer based on a Michelson Interferometer coupled to an integrated imaging system that measures infrared radiation emitted from the Earth. Developed by the Center National d’Etudes Spatiales (CNES) in collaboration with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), IASI was launched in October 2006 onboard the polar orbiting Meteorological Operational Platform (Metop-A), and in September 2012 onboard Metop-B. A third IASI will be launched onboard Metop-C in October 2018. IASI provides 8461 spectral samples, ranging from 645 cm⁻¹ to 2760 cm⁻¹ (15.5 µm and 3.6 µm), with a spectral sampling of 0.25 cm⁻¹, and a spectral resolution of 0.5 cm⁻¹ after apodisation (‘Level 1c’ spectra). IASI is an across
track scanning system, whose swath width is of 2200 km, allowing global coverage twice a day. The IFOV is sampled by 2×2 circular pixels whose ground resolution is 12 km at nadir. IASI has demonstrated the possibility to retrieve or detect several chemistry and climate variables from hyperspectral infrared observation: for instance, water vapour (H₂O), carbon dioxide (CO₂), carbon monoxide (CO), methane (CH₄), ozone (O₃), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), ammonia (NH₃), nitric acid (HNO₃), volatile organic compounds (VOCs) and aerosols (Hilton et al., 2012; Clarisse et al., 2011) on regional and global scales. IASI enables the monitoring of key gases for climate and atmospheric chemistry in near real time and has also highlighted the benefit of high-performance infrared sounders for numerical weather prevision (NWP) applications.

1.2.3 CO₂

Mid-tropospheric columns of CO₂ can be retrieved from hyperspectral infrared sounders such as AIRS and IASI (Chédin et al., 2003; Crevoisier et al., 2003) using non-linear inference scheme (Crevoisier et al., 2009a).

Products have been validated using aircraft measurements, mostly from the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) program (Machida et al., 2008; Matsueda et al. 2008).

As an example, Figure 21 shows time series of IASI/Metop-A derived mid-tropospheric CO₂ column as a function of time and latitude. The trend, seasonality and latitudinal gradient of CO₂ are well seen in the figure.

Figure 22 shows the same but for IASI/Metop-B.

Figure 23 and Figure 24 show spatial maps for the IASI/Metop-A and IASI/Metop-B products, respectively, to also illustrate the spatial coverage of the data for a typical month including number of observations an standard deviation.
Figure 21 – Monthly and latitudinal evolution of mid-tropospheric CO₂ (top) as seen by IASI/Metop-A and number of observations per 10 deg latitude band (bottom).

Figure 22 - Monthly and latitudinal evolution of mid-tropospheric CO₂ (top) as seen by IASI/Metop-B and number of observations per 10 deg latitude band (bottom).
Figure 23 - Map of mid-tropospheric CO₂ from IASI/Metop-A for September 2011 (left). Right: Number of observations per 10°x10° grid size (top) and standard deviation (bottom).

Figure 24 - Map of mid-tropospheric CO₂ from IASI/Metop-B for September 2016 (left). Right: Number of observations per 10°x10° grid size (top) and standard deviation (bottom).
1.2.4 CH$_4$

Mid-tropospheric columns of CH$_4$ can be retrieved from the hyperspectral infrared sounder IASI (Crevoisier et al., 2003, 2013) using non-linear inference scheme (Crevoisier et al., 2009b).

Products have been validated using aircraft measurements, from the Comprehensive Observation Network for TRace gases by AlrLiner (CONTRAIL) program (Machida et al., 2008; Matsueda et al. 2008) and the HIAPER Pole-to-Pole Observations (HIPPO) project (Wofsy et al., 2012), as well as from balloon measurements from AirCores (Membrive et al., 2016).

As an example, Figure 25 shows time series of IASI/Metop-A derived mid-tropospheric CO$_2$ column as a function of time and latitude. The trend, seasonality and latitudinal gradient of CO$_2$ are well seen in the figure.

Figure 26 shows the same but for IASI/Metop-B.

Figure 27 and Figure 28 show spatial maps for the IASI/Metop-A and IASI/Metop-B products, respectively, to also illustrate the spatial coverage of the data for a typical month including number of observations and standard deviation.
Figure 25 – Monthly and latitudinal evolution of mid-tropospheric CH₄ (top) as seen by IASI/Metop-A and number of observations per 10 deg latitude band (bottom).

Figure 26 - Monthly and latitudinal evolution of mid-tropospheric CH₄ (top) as seen by IASI/Metop-B and number of observations per 10 deg latitude band (bottom).
Figure 27 - Map of mid-tropospheric CH₄ from IASI/Metop-A for September 2011 (left). Right: Number of observations per 10°×10° grid size (top) and standard deviation (bottom).

Figure 28 - Map of mid-tropospheric CH₄ from IASI/Metop-B for September 2016 (left). Right: Number of observations per 10°×10° grid size (top) and standard deviation (bottom).
1.2.5 List of mid-tropospheric CO₂ and CH₄ data products

Table 4 lists the CO₂ and CH₄ mid/upper troposphere data products.

The product with comment « Existing GHG-CCI product » is the latest versions of AIRS CO₂ Level 2 products, which has been generated in the framework of the GHG-CCI project (http://www.esa-ghg-cci.org/). This product exists and is available from the GHG-CCI website (http://www.esa-ghg-cci.org/ -> CRDP (Data)). It will be delivered to ECMWF essentially « as is » (incl. existing documentation) and made available for the C3S CDS. However, it currently only exists in ASCII format but it will be converted to NetCDF format for C3S as will also be done for the IASI products listed in Table 4.

Table 4 - Overview mid/upper troposphere CO₂ and CH₄ data products.

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Level</th>
<th>Sensor(s)</th>
<th>(Planned) Availability</th>
<th>Comments</th>
</tr>
</thead>
</table>
2. Level 2 XCO₂ and XCH₄ data products

2.1 Product description

The format of these data products is described in and compliant with the specification of the corresponding pre-cursor products as given in the GHG-CCI project Product Specification Document (PSD), version 3 (Buchwitz et al., 2014):

These products are in NetCDF-4 (classic) format and are in-line with CF (Climate and Forecasting) convention 3. The products are essentially self-explaining in particular due to the metadata contained in each data product.

The file names consist of ESACCI-GHG (to be consistent with the pre-cursor products), processing level (L2), product type (CO₂ or CH₄), sensor (e.g., SCIAMACHY, GOSAT), algorithm (e.g., BESD or SRFP), date (YYYYMMDD), file version (fv#) and file name extension (.nc), separated by hyphens (“-”).

Examples:
ESACCI-GHG-L2-CO2-SCIAMACHY-BESD-20021216-fv1.nc
ESACCI-GHG-L2-CH4-GOSAT-SRFP-20120909-fv1.nc

Each *.nc product file corresponds to one day of satellite observations.

In Buchwitz et al., 2014 the so-called Common Parameters of these products are described. These are those parameters which are relevant for all users. In addition, each product may contain additional (algorithm specific) parameters, which are described in separate Product User Guides (PUGs available from http://www.esa-ghg-cci.org/).

For the C3S products a similar approach is used. In the following the common parameters are described and the additional (algorithm specific) parameters are described in specific ANNEXes (see Sect. 8).

The description given in the following is applicable to the following C3S data products:
- CO2_GOS_OCFP
- CO2_GOS_SRFP
- CH4_GOS_OCFP
- CH4_GOS_SRFP
- CH4_GOS_OCPR
- CH4_GOS_SRPR
- XCO2_EMMA
- XCH4_EMMA
The description is also applicable to the following existing GHG-CCI SCIAMACHY data products:
- CO2_SCI_BESD
- CO2_SCI_WFMD
- CH4_SCI_WFMD
- CH4_SCI_IMAP

2.1.1 Common parameters

In this section the common parameters of the XCO2 and XCH4 Level data products are described.

In order to use these products as easily as possible it has been aimed at harmonizing these various products. The goal was to make sure that users can easily switch from one product to another. This has been achieved for all products and parameters with the exception of the averaging kernels and related parameters. These parameters are closely related to retrieval algorithm specific characteristics and require special consideration by the users of these products as is explained in detail in Sect. 2.1.2.

Dimensions in Table 5 and Table 6 are defined as follows:

- \(n \): number of satellite observations (ground pixels) (per file, i.e., for the given day of observations)
- For Averaging Kernel (AK) and related parameters:
 - As explained in Sect. 2.1.2, the AK and related parameters are provided for “layer-based AKs” and “level-based AKs”
 - For layer-based AK \(m \) is the number of layers which are defined by \(k = m + 1 \) pressure levels.
 - For level-based AK only levels are used. Here all parameters have the same number of elements, namely \(m \) levels. Here the number of pressure levels is also \(m \) (i.e., \(k = m \)).

Table 5 and Table 6 present an overview about all common parameters including a short description of each parameter. A detailed description is given afterwards.
Table 5: Description of Common Parameters of the XCO$_2$ and XCH$_4$ Level 2 data products.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dimensions</th>
<th>Units</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common parameters for XCO$_2$ products:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xco2</td>
<td>Float</td>
<td>n</td>
<td>micromol per mol, abbreviated ppm, i.e., 10^{-6}</td>
<td>Retrieved column-averaged dry-air mole fraction of atmospheric carbon dioxide (XCO$_2$) in ppm.</td>
</tr>
<tr>
<td>xco2_uncertainty</td>
<td>Float</td>
<td>n</td>
<td>micromol per mol, abbreviated ppm, i.e., 10^{-6}</td>
<td>Statistical uncertainty of XCO$_2$ in ppm (1-sigma).</td>
</tr>
<tr>
<td>xco2_averaging_kernel</td>
<td>Float</td>
<td>n x m</td>
<td>[-]</td>
<td>XCO$_2$ averaging kernel (a profile = vector for each single observation). Quantifies the altitude sensitivity of the XCO$_2$ retrieval.</td>
</tr>
<tr>
<td>co2_profile_apriori</td>
<td>Float</td>
<td>n x m</td>
<td>micromol per mol, abbreviated ppm, i.e., 10^{-6}</td>
<td>A priori mole fraction profile of atmospheric CO$_2$ in ppm.</td>
</tr>
<tr>
<td>xco2_quality_flag</td>
<td>Byte</td>
<td>n</td>
<td>[-]</td>
<td>Quality flag for XCO$_2$ retrieval. 0 = good.</td>
</tr>
<tr>
<td>Common parameters for XCH$_4$ products:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xch4</td>
<td>Float</td>
<td>n</td>
<td>nanomol per mol, abbreviated ppb, i.e., 10^{-9}</td>
<td>Retrieved column-averaged dry-air mole fraction of atmospheric methane (XCH$_4$) in ppb.</td>
</tr>
<tr>
<td>xch4_uncertainty</td>
<td>Float</td>
<td>n</td>
<td>nanomol per mol, abbreviated ppb, i.e., 10^{-9}</td>
<td>Statistical uncertainty of XCH$_4$ in ppb (1-sigma)</td>
</tr>
<tr>
<td>xch4_averaging_kernel</td>
<td>Float</td>
<td>n x m</td>
<td>[-]</td>
<td>XCH$_4$ averaging kernel (a profile = vector for each single observation). Quantifies the altitude sensitivity of the XCH$_4$ retrieval.</td>
</tr>
<tr>
<td>ch4_profile_apriori</td>
<td>Float</td>
<td>n x m</td>
<td>nanomol per mol, abbreviated ppb, i.e., 10^{-9}</td>
<td>A priori mole fraction profile of atmospheric CH$_4$ in ppb.</td>
</tr>
<tr>
<td>xch4_quality_flag</td>
<td>Byte</td>
<td>n</td>
<td>[-]</td>
<td>Quality flag for XCH$_4$ retrieval, 0 = good.</td>
</tr>
<tr>
<td>Common parameters for XCO$_2$ and XCH$_4$ products:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See continuation in Table 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Continuation of Table 5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dimensions</th>
<th>Units</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common parameters for XCO$_2$ and XCH$_4$ products:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar_zenith_angle</td>
<td>Float</td>
<td>n</td>
<td>Degrees</td>
<td>Solar zenith angle</td>
</tr>
<tr>
<td>sensor_zenith_angle</td>
<td>Float</td>
<td>n</td>
<td>Degrees</td>
<td>Sensor zenith angle</td>
</tr>
<tr>
<td>time</td>
<td>Double</td>
<td>n</td>
<td>Seconds</td>
<td>Measurement time</td>
</tr>
<tr>
<td>longitude</td>
<td>Float</td>
<td>n</td>
<td>Degrees</td>
<td>Center longitude of the measurement</td>
</tr>
<tr>
<td>latitude</td>
<td>Float</td>
<td>n</td>
<td>Degrees</td>
<td>Center latitude of the measurement</td>
</tr>
<tr>
<td>pressure_levels</td>
<td>Float</td>
<td>n x k</td>
<td>hPa</td>
<td>Vertical altitude coordinate in pressure units as used for averaging kernels</td>
</tr>
<tr>
<td>pressure_weight</td>
<td>Float</td>
<td>n x m</td>
<td>[-]</td>
<td>Pressure weights as used for averaging kernels</td>
</tr>
</tbody>
</table>

Description of each parameter:

$xco2$

Main XCO$_2$ parameter. Retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO$_2$) in ppm.

$xco2$ _uncertainty

Statistical uncertainty of main XCO$_2$ parameter: 1-sigma uncertainty of the retrieved XCO$_2$ in ppm.

$xco2$ _averaging_kernel

XCO$_2$ averaging kernel (for each observation: vertical profile = vector of dimension m).

Represents the sensitivity of the retrieved XCO$_2$ to atmospheric carbon dioxide mole fraction perturbations depending on pressure (height).

For details see Sect. 2.1.2.
co2_profile_apriori

A priori mole fraction profile of atmospheric carbon dioxide in ppm needed to apply the XCO\textsubscript{2} averaging kernels.

For details see Sect. 2.1.2.

xco2_quality_flag

Quality flag for XCO\textsubscript{2} retrieval. 0 = good. 1 = bad.

xch4

Main XCH\textsubscript{4} parameter. Retrieved column-average dry-air mole fraction of atmospheric methane (XCH\textsubscript{4}) in ppb

xch4_uncertainty

Statistical uncertainty of main XCH\textsubscript{4} parameter: 1-sigma uncertainty of the retrieved XCH\textsubscript{4} in ppb.

xch4_averaging_kernel

XCH\textsubscript{4} averaging kernel (for each observation: vertical profile = vector of dimension \(m\)).

Represents the sensitivity of the retrieved XCH\textsubscript{4} to atmospheric methane mole fraction perturbations depending on pressure (height).

For details see Sect. 2.1.2.

ch4_profile_apriori

A priori mole fraction profile of atmospheric methane in ppb needed to apply the XCH\textsubscript{4} averaging kernels.

For details see Sect. 2.1.2.

xch4_quality_flag

Quality flag for XCH\textsubscript{4} retrieval. 0 = good. 1 = bad.
solar_zenith_angle

Solar zenith angle (SZA). Angle between the line of sight to the sun and the local vertical. SZA is a positive number (i.e., larger or equal to 0 deg).

sensor_zenith_angle

Sensor zenith angle is the angle between the line of sight from the observed ground pixel to the sensor and the local vertical. The sensor zenith angle is a positive number (i.e., larger or equal to 0 deg; 0 deg for exact nadir (downlooking) observation).

time

Measurement time in seconds since 01.01.1970 00:00:00.

longitude

Center longitude of the measurement. A number in the range -180 deg to +180 deg. 0 deg passes through Greenwich.

latitude

Center latitude of the measurement. A number in the range -90 deg (south pole) to +90 deg (north pole). 0 deg = equator.

pressure_levels

Pressure levels as used for the averaging kernels. Ordered from the bottom of the atmosphere to the top of the atmosphere (i.e., by decreasing pressure).

For details see Sect. 2.1.2.

pressure_weight

Layer / level dependent weights needed to apply the averaging kernels.

For details see Sect. 2.1.2.
2.1.2 How to use the averaging kernels (AK) ?

2.1.2.1 Introduction

In order to compare the satellite-retrieved XCO$_2$ and XCH$_4$ data products with model simulations and for inverse modelling of surface fluxes (see, e.g., [Bergamaschi et al., 2007]) the altitude sensitivity of the satellite retrievals has to be taken into account. Information on the altitude sensitivity is provided by the satellite XCO$_2$ and XCH$_4$ averaging kernels and corresponding CO$_2$ and CH$_4$ a priori vertical profiles.

Also for validation purposes the averaging kernels have to be considered, see, e.g., [Wunch et al., 2010, 2011], [Dils et al., 2013] and TCCON website (in particular [https://tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy/Auxiliary_Data]).

All common variables described in the previous section (e.g., xco2, xco2_uncertainty, time, longitude, etc.) can be used identically for all GHG-CCI ECA products with the exception of the averaging kernels and related parameters, as these parameters are closely related to the retrieval algorithm used.

In this section it is explained how the averaging kernels and related parameters can be used.

How these parameters have been defined depends on the retrieval algorithm used to generate a certain product and it was not possible to fully harmonize their use, i.e., their use depends on the product.

The purpose of this section is to explain how to use the averaging kernels and their related parameters and for which data product which method is recommended.

There are two different averaging kernel (AK) categories:
Depending on product, the AKs are
- “layer-based” (IUP, Univ. Bremen, and SRON products)
or
- “level-based” (Univ. Leicester products).

In the following sub-sections more information on this is given including the information for which product which category is valid.
Note that user can also determine “automatically” or via inspection of the product files which category a given product belongs to:

- For “layer-based” products the vertical dimension of parameter `pressure_levels` is $m+1$, i.e., there is one entry more than for parameter `pressure_weight` (or any of the other parameters with a vertical dimension), which has m vertical entries, i.e., one entry less than parameter `pressure_levels`.
- For “level-based” products all parameters have m entries.

In the following sub-sections the relevant parameters are listed and shortly explained followed by detailed explanations of how these parameters can be used for the layer-based AK products and for the level-based AK products.

Important note:
The AK related parameters and how they can be used as described in this document is most interesting for users who want to use different products and prefer to easily switch from one product to another. The main purpose of the common parameters and methods described in this document is to provide the users with the parameters and formulas to do this. However, all products also contain additional parameters, not described in this document, but in the PUGS of the individual products (please see also the Algorithm Theoretical Basis Documents (ATBDs) of the individual algorithms used to generate the individual products). Using these additional parameters (and corresponding formulas) users may be able to obtain somewhat more accurate results (although the differences are expected to be very small).
2.1.2.2 Averaging kernel related parameters

For each single observation (ground pixel) several averaging kernel related parameters are contained in the satellite product files. These parameters are listed in Table 7.

For additional information and how to use these parameters please see the following two sub-sections.

Table 7: Overview of averaging kernel (AK) and related parameters. (*) The ground pixel dimension \(n \), see previous sections) is not listed below. Here each array is 1-dimensional (a vector of dimension \(k \) or \(m \)). Each element corresponds to one atmospheric level or layer as explained in the following sections.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Mathematical symbol</th>
<th>Dimension (*)</th>
<th>Unit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure_levels</td>
<td>p</td>
<td>(k)</td>
<td>[hPa]</td>
<td>Pressure levels; note: (k = m + 1) (for layer-based approach) or (k = m) (for level-based approach)</td>
</tr>
<tr>
<td>pressure_weight</td>
<td>pw</td>
<td>(m)</td>
<td>[-]</td>
<td>Pressure weights for all layers / levels</td>
</tr>
<tr>
<td>xco2_averaging_kernel</td>
<td>AK</td>
<td>(m)</td>
<td>[-]</td>
<td>XCO(_2) averaging kernel</td>
</tr>
<tr>
<td>co2_profile_apriori</td>
<td>VMR</td>
<td>(m)</td>
<td>(\mu \text{mol/mol, abbreviated ppm (} 10^{-6}))</td>
<td>CO(_2) a priori profile</td>
</tr>
<tr>
<td>xch4_averaging_kernel</td>
<td>AK</td>
<td>(m)</td>
<td>[-]</td>
<td>XCH(_4) averaging kernel</td>
</tr>
<tr>
<td>ch4_profile_apriori</td>
<td>VMR</td>
<td>(m)</td>
<td>nanomol/mol, abbreviated ppb (10(^9))</td>
<td>CH(_4) a priori profile</td>
</tr>
</tbody>
</table>
2.1.2.3 How to use layer-based AKs?

In this section it is described how the common parameters related to averaging kernels (AKs) can be used to apply the satellite’s AKs to model profiles in order to take the altitude sensitivity of the satellite’s XCO₂ and XCH₄ retrievals into account.

As explained, each product may (or may not) contain additional parameters and corresponding formulas, not described in this document (but in the corresponding PUG), which can be used to obtain somewhat more accurate results for a specific product (although the differences compared to the method described in this section are expected to be small).

For the layer-based approach the AKs and corresponding \textit{a priori} CO₂ and CH₄ profiles are defined for layers and they correspond to layer averages. There are \(m \) layers, which are defined by \(k = m+1 \) pressure levels.

The “AK layer-based approach”, which is explained in this sub-section, needs to be applied for the following products (all IUP, Univ. Bremen, and SRON products):

- CO2_SCI_BESD
- CO2_GOS_SRFP
- XCO2_EMMA
- CH4_SCI_WFMD
- CH4_SCI_IMAP
- CH4_GOS_SRFP
- CH4_GOS_SRPR
- XCH4_EMMA

As already described above:

Note that user can also determine “automatically” or via inspection of the product files which category a given product belongs to:

- For “layer-based” products the vertical dimension of parameter \texttt{pressure_levels} is \(m+1 \), i.e., there is one entry more than for parameter \texttt{pressure_weight} (or any of the other parameters with a vertical dimension), which has \(m \) vertical entries, i.e., one entry less than parameter \texttt{pressure_levels}.
- For “level-based” products all parameters have \(m \) entries.
The layer-based approach is also described and used in /Bergamaschi et al., 2007/. Here a slightly modified version of their Eq. 2 is shown (here GHG = CO₂ or CH₄):

\[
X_{GHG}^{mod} = \sum_{i=1}^{m} [VMR_i^{apri} + AK_i(VMR_i^{mod} - VMR_i^{apri})] \cdot pw_i
\]

Eq. (1)

- Here \(X_{GHG}^{mod}\) is the desired modelled XCO₂ or XCH₄ value, which corresponds to the satellite XCO₂ or XCH₄ retrievals.
- The sum is over the \(m\) atmospheric layers (located between pressure levels \(p_i\) and \(p_{i+1}\) with \(i = 1...m\)). Here pressure is the “normal” or “total” or “wet” pressure (not the “dry pressure”, see below). Here \(i = 1\) corresponds to the bottom of the atmosphere and \(i = k = m+1\) corresponds to the top of the atmosphere.
- \(pw_i\) is a layer-dependent weight (depending on algorithm/product this corresponds to \(\Delta p/p_{surf}\) of /Bergamaschi et al., 2007/ times a conversion factor for the conversion of wet to dry pressure).
- \(VMR_i^{apri}\) is the satellite a priori layer-averaged CO₂ or CH₄ volume mixing ratio (VMR) or, more precisely, Dry Mole Fraction (DMF), between pressure levels \(p_i\) and \(p_{i+1}\) (note: \(p_i > p_{i+1}\)).
- \(VMR_i^{mod}\) is the corresponding value of the model (CO₂ of CH₄) VMR (DMF) between pressure levels \(p_i\) and \(p_{i+1}\).
- \(AK_i\) is the satellite XCO₂ or XCH₄ averaging kernel for layer \(i\).

Note that in this equation all parameters are coming from the satellite product with the exception of \(VMR_i^{mod}\).

Note that the described approach permits to use all satellite data as they are without the need to manipulate them, e.g., by interpolation. Only the model quantity \(VMR_i^{mod}\) needs to be computed.

For illustration and a short overview please see Figure 29.

For a modeler the receipt to compute \(X_{GHG}^{mod}\) is the following:

- For each satellite observation:
 - Interpolate the model profiles to the location and time of the satellite observation.
 - Compute for each satellite layer \(i\), as defined by pressure levels \(p_i\) and \(p_{i+1}\):
 - The layer-averaged model (CO₂ or CH₄) VMR (DMF), i.e., \(VMR_i^{mod}\).
 - Apply the formula given above to compute the desired quantity \(X_{GHG}^{mod}\) (see also Figure 29 and Figure 30).

Figure 29 and Figure 30 explain how the parameters as provided via the satellite product files (Table 7) have to be used in order to apply Eq. (1).
Figure 29 - Overview how to compute XCO₂ or XCH₄ (= XGHG) using the „layer-based“ AK method. Additional explanations are given in Figure 30.

How to use „layer-based“ Averaging Kernels (AKs):

Parameters provided via the satellite product files are shown in blue. Modelers have to compute the layer-averaged model VMRs (= gas Dry Mole Fractions (DMF)) co2_mod or ch4_mod for all layers and use these formulas:

\[
\text{xco2}_\text{mod} = \sum_i \left[\text{co2}_\text{profile prior}_i + (\text{co2}_\text{mod}_i - \text{co2}_\text{profile prior}_i) \cdot \text{xco2}_\text{averaging kernel}_i \right] \cdot \text{pressure weight}_i
\]

\[
\text{xch4}_\text{mod} = \sum_i \left[\text{ch4}_\text{profile prior}_i + (\text{ch4}_\text{mod}_i - \text{ch4}_\text{profile prior}_i) \cdot \text{xch4}_\text{averaging kernel}_i \right] \cdot \text{pressure weight}_i
\]

Here the underlying mathematical formula (XGHG = XCO₂ or XCH₄):

\[
X_{\text{GHG}}^{\text{mod}} = \sum_{i=1}^{m} \left[\text{VMR}^\text{apri}_i + (\text{VMR}^\text{mod}_i - \text{VMR}^\text{apri}_i) \cdot \text{AK}_i \right] \cdot \text{pw}_i
\]
Figure 30 - Additional explanations related to the parameters needed to use the “layer-based AK approach”.

Parameters for layer-based AKs:

<table>
<thead>
<tr>
<th>Top of atmosphere</th>
<th>Layer index</th>
<th>Layer pressure</th>
<th>Layer AK, VMR<sup>pr</sup>, pw</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = k = m + 1$</td>
<td>p_{m+1}</td>
<td>$\Delta p_m = p_m p_{m+1}$</td>
<td>$i = m$ AK<sub>m</sub> VMR<sub>m</sub> pw<sub>m</sub></td>
</tr>
<tr>
<td>$i = m$</td>
<td>p_m</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$i = 4$</td>
<td>p_4</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$i = 3$</td>
<td>p_3</td>
<td>$\Delta p_3 = p_3 p_4$</td>
<td>$i = 3$ AK<sub>3</sub> VMR<sub>3</sub> pw<sub>3</sub></td>
</tr>
<tr>
<td>$i = 2$</td>
<td>p_2</td>
<td>$\Delta p_2 = p_2 p_3$</td>
<td>$i = 2$ AK<sub>2</sub> VMR<sub>2</sub> pw<sub>2</sub></td>
</tr>
<tr>
<td>Bottom of atmosphere (Surface)</td>
<td>$i = 1$</td>
<td>$p_1 = p_{surf}$</td>
<td>$i = 1$ AK<sub>1</sub> VMR<sub>1</sub> pw<sub>1</sub></td>
</tr>
</tbody>
</table>

Note: Vertical dimension of array p is vertical dimension of other arrays \ldots for layer-based products.
2.1.2.4 How to use level-based AKs?

For the level-based approach the AKs and corresponding a priori VMR (= DMF) profiles are defined on levels (not on layers).

The same parameters (variable names etc.) as provided via the satellite products files are used as for the layer-based approach described in the previous section but with a slightly different implementation to apply these parameters to compute the modelled XCO₂ or XCH₄.

For the level-based approach all AK related arrays are given for \(m \) levels.

The “AK level-based approach”, which is explained in this sub-section, needs to be applied for the following GHG-CCI ECA products (all UoL products, i.e., all “OC” products):

- CO₂_GOS_OCFP
- CH₄_GOS_OCPR
- CH₄_GOS_OCFP

As already described above:

Note that user can also determine “automatically” or via inspection of the product files which category a given product belongs to:

- For “layer-based” products the vertical dimension of parameter `pressure_levels` is \(m+1 \), i.e., there is one entry more than for parameter `pressure_weight` (or any of the other parameters with a vertical dimension), which has \(m \) vertical entries, i.e., one entry less than parameter `pressure_levels`.
- For “level-based” products all parameters have \(m \) entries.

For model comparisons and inverse modelling the following method is recommended in order to compute the modelled XCO₂ or XCH₄.

The equation to apply the level-based averaging kernels to the model data is the same as for the layer-based approach (Eq. 1) but with the variables now all on levels, rather than layers. The key point is that the model data (co₂_mod or ch₄_mod in Figure 31) must be interpolated onto the retrieval pressure levels (\(p_i \)). This interpolation should be done with care so as to conserve the total column amounts of \(XGHG \).

For illustration and a short overview please see Figure 31.
For a modeller, the recipe to compute $XGHG^{mod}$ is the following:

- For each satellite observation:
 - Interpolate the model profiles to the location and time of the satellite observation.
 - Compute for model data at each satellite retrieval pressure level i the model VMR, i.e., VMR_i^{mod}
 - Apply the formula given above (Eq. (1)) to compute the desired quantity $XGHG^{mod}$ (see also Figure 31 and Figure 32).

Figure 31 and Figure 32 explain how the parameters as provided via the satellite product files (Table 7) have to be used in order to apply Eq. (1).

Figure 31 - Overview how to compute XCO$_2$ or XCH$_4$ (= XGHG) using the „level-based“ AK method. Additional explanations are given in Figure 32.

How to use „level-based“ Averaging Kernels (AKs):

Parameters provided via the satellite product files are shown in blue. Modelers have to interpolate model-level VMRs (= gas Dry Mole Fractions (DMF)) co2_mod or ch4_mod for all levels and use these formulas:

\[
\begin{align*}
\text{xco2}_\text{mod} &= \sum_i \left[\text{co2}_\text{profile}_{\text{apriori}}(i) + (\text{co2}_\text{mod}(i) - \text{co2}_\text{profile}_{\text{apriori}}(i)) \times \text{xco2}_\text{averaging}_\text{kernel}(i) \right] \times \text{pressure}_\text{weight}(i) \\
\text{xch4}_\text{mod} &= \sum_i \left[\text{ch4}_\text{profile}_{\text{apriori}}(i) + (\text{ch4}_\text{mod}(i) - \text{ch4}_\text{profile}_{\text{apriori}}(i)) \times \text{xch4}_\text{averaging}_\text{kernel}(i) \right] \times \text{pressure}_\text{weight}(i)
\end{align*}
\]

Here the underlying mathematical formula ($XGHG = XCO_2$ or XCH$_4$):

\[
XGHG^{mod} = \sum_{i=1}^{m} [VMR_i^{apri} + (VMR_i^{mod} - VMR_i^{apri})AK_i] \times pw_i
\]
Figure 32 - Additional explanations related to the parameters needed to use the “level-based AK approach”.

Parameters for level-based AKs:

<table>
<thead>
<tr>
<th>Level index</th>
<th>Level pressure</th>
<th>Levels</th>
<th>Level AK, VMR_{pw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of atmosphere</td>
<td>$i = k = m$</td>
<td>p_m</td>
<td>AK_m, VMR_m, pw_m</td>
</tr>
<tr>
<td>* * *</td>
<td>$i = 3$</td>
<td>p_3</td>
<td>AK_3, VMR_3, pw_3</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>p_2</td>
<td>AK_2, VMR_2, pw_2</td>
<td></td>
</tr>
<tr>
<td>Bottom of atmosphere (Surface)</td>
<td>$i = 1$</td>
<td>$p_1 = p_{surf}$</td>
<td>AK_1, VMR_1, pw_1</td>
</tr>
</tbody>
</table>

Note: ALL arrays have vertical dimension m (i.e., p_{m+1} NOT available for level-based products)

GHG-CCI Level 2 products contain these arrays for each ground pixel:
- xco2_averaging_kernel
- xch4_averaging_kernel
- co2_profile_apriori
- ch4_profile_apriori

 pressure_levels

 $i = 1 ... m$

 pressure_weight

 $i = 1 ... m$
2.1.3 Algorithm specific parameters

Each product may contain additional parameters, see the product specific ANNEXes listed in Sect. 8.

2.2 Target requirements

The target requirements for these products are described in the Target Requirement Document (TRD) (TRD GHG, 2017).

2.3 Data usage information

The use of the data products is not trivial and typically the interpretation of these products requires appropriate modelling. The main reason for this is the long lifetime of CO₂ and CH₄ in the atmosphere combined with atmospheric transport (and for CH₄ also atmospheric chemistry needs to be considered). As a consequence of this atmospheric concentrations may be locally or regionally higher (or lower) compared to background concentration far away from the source (or sink) region. A further complication arises due to the sparseness of the data due to the spatial coverage of the satellite data, because measurements can only be made on parts of the dayside (the solar zenith angle must be smaller than about 75°) but also because of cloud contamination and other reasons.

The described data products can be used in combination with appropriate modelling to obtain information on the various natural and anthropogenic surface and sinks of CO₂ and CH₄ as shown in a number of scientific publications such as Alexe et al., 2015; Bergamaschi et al., 2009, 2013; Detmers et al., 2015; Guerlet et al., 2013; Houweling et al., 2004, 2015; Pandey et al., 2016; Reuter et al., 2014a, 2014b, 2017; Ross et al., 2013; Schneising et al., 2014a, 2014b; Turner et al., 2015, 2016.

They can also be used for comparisons with models (e.g., carbon models or global chemistry-climate models) as also shown in a number of publications such as Buchwitz et al., 2005, 2013; Cogan et al., 2011; Hayman et al., 2014; Parker et al., 2011; Shindell et al., 2013.

They can also be used to study atmospheric trends and variability as shown in Buchwitz et al., 2007; Frankenber et al., 2011; Schneising et al., 2011.
3. Level 3 XCO₂ and XCH₄ data products

3.1 Product description

These data products are in Obs3MIPs format, which is described on the Obs4MIPs website: https://www.earthsystemcog.org/projects/obs4mips/.

Obs4MIPs (Observations for Model Intercomparisons Project) is an activity to make observational products more accessible especially for climate model intercomparisons.

The XCO₂ and XCH₄ data products in Obs4MIPs format are gridded data products with a spatial resolution of 5°x5° and monthly time resolution.

These products have been generated using as input the Level 2 EMMA products described in Sect. 2.

Figure 33 to Figure 36 show how these products “looks like”.

In the following sub-sections the Obs4MIPs product format is described.
Figure 33 – OBS4MIPS XCO₂ time series for three latitude bands.

![Time series graph](image)

Figure 34 – OBS4MIPS maps for August 2016. Left: XCO₂. Right: Number of observations (top), reported uncertainty (middle) and standard deviation of the individual observations contributing to each 5°x5° grid cell (bottom).

![Map example](image)
Figure 35 – OBS4MIPS XCH₄ time series for three latitude bands.

Figure 36 – OBS4MIPS maps for August 2016. Left: XCH₄. Right: Number of observations (top), reported uncertainty (middle) and standard deviation of the individual observations contributing to each 5°x5° grid cell (bottom).
3.1.1 Obs4MIPS XCO2 product format

The initial version of this product has been generated based on the GHG-CCI CRDP3 data set as described in this document: http://www.esa-ghg-cci.org/?q=webfm_send/330

The product described in this document has the same format but is updated in terms of input Level 2 products and extension in time, i.e., it covers a longer time period.

The entire product is contained in a single file using this file name convention:

```
xco2_c3s_l3_v30_200301_201612.nc
```

The main quantity / data field is the column-average dry-air mole fraction of atmospheric carbon dioxide (CO2), denoted XCO2, as retrieved from the two satellite instruments SCIAMACHY/ENVISAT ([Burrows et al., 1995; Bovensmann et al., 1999](http://www.esa-ghg-cci.org/?q=webfm_send/330)) and TANSO-FTS/GOSAT ([Kuze et al., 2009](http://www.esa-ghg-cci.org/?q=webfm_send/330)). XCO2 is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CO2 divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., [Buchwitz et al., 2005](http://www.esa-ghg-cci.org/?q=webfm_send/330), for details). For example, if XCO2 is 0.0004 (i.e., 400 ppm, parts per million) at a given location this means that there are 400 CO2 molecules above that location per 1 million air molecules (excluding water vapor molecules).

Table 8 lists the main characteristics of this data product.

<table>
<thead>
<tr>
<th>CF variable name, units</th>
<th>Long name: column-average dry-air mole fraction of atmospheric carbon dioxide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard name: dry_atmosphere_mole_fraction_of_carbon_dioxide</td>
</tr>
<tr>
<td></td>
<td>Units: dimensionless (mol/mol)</td>
</tr>
</tbody>
</table>

Spatial resolution: 5° equal angle

Coverage: Global (2003 – mid 2009: land only)

Table 8: Main characteristics of the XCO2 Obs4MIPs product.

Note that a resolution of 5°x5° has been selected (instead of, e.g., 1°x1°) to ensure better noise suppression (note that the underlying individual satellite retrievals are noisy and sparse due to very strict quality filtering).
The main variables as contained in the XCO$_2$ Obs4MIPs product file are:

xco2:
Satellite retrieved column-average dry-air mole fraction of atmospheric carbon dioxide
(Note: typical values are $<< 1.0$ (typically close to 0.0004) and $1.0E20 = \text{no data}$)

xco2_nobs:
Number of individual XCO$_2$ Level 2 observation (per 5°x5° grid cell) used to compute the reported Level 3 XCO$_2$ monthly average value (0 = no data)

xco2_stderr:
Reported uncertainty defined as standard error of the average including single sounding noise and potential seasonal and regional biases

xco2_stddev:
Average standard deviation of the underlying XCO$_2$ Level 2 observations

time:
Time in days since 1-Jan-1990

lat:
Center latitude in degrees north (-90.0 to +90.0)

lon:
Center longitude in degrees east (-180.0 to +180.0)
3.1.2 Obs4MIPS XCH\textsubscript{4} product format

The initial version of this product has been generated based on the GHG-CCI CRDP3 data set as described in this document: http://www.esa-ghg-cci.org/?q=webfm_send/331

The product described in this document has the same format but is updated in terms of input Level 2 products and extension in time, i.e., it covers a longer time period.

The entire product is contained in a single file using this file name convention:

\texttt{xch4_c3s_l3_v30_200301_201612.nc}

The main quantity / data field is the column-average dry-air mole fraction of atmospheric methane (CH\textsubscript{4}), denoted XCH\textsubscript{4}, as retrieved from the two satellite instruments SCIAMACHY/ENVISAT (Burrows \textit{et al.}, 1995; Bovensmann \textit{et al.}, 1999) and TANSO-FTS/GOSAT (Kuze \textit{et al.}, 2009). XCH\textsubscript{4} is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CH\textsubscript{4} divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., Buchwitz \textit{et al.}, 2005, for details). For example, if XCH\textsubscript{4} is 0.0000018 (i.e., 1800 ppb, parts per billion) at a given location this means that there are 1800 CH\textsubscript{4} molecules above that location per 1 billion air molecules (excluding water vapor molecules).

Table 9 lists the main characteristics of this data product.

| CF variable name, units | Long name: column-average dry-air mole fraction of atmospheric methane
| Standard name: dry_atmosphere_mole_fraction_of_methane
| Units: dimensionless (mol/mol)
| See also: CF Standard Name Table, Version 31, 08 March 2016 (http://cfconventions.org/Data/cf-standard-names/31/build/cf-standard-name-table.html)
| Spatial resolution | 5° equal angle
| Temporal resolution | Monthly average, from January 2003–December 2016
| Coverage | Global (November 2005 – March 2009: land only)

Table 9: Main characteristics of the XCH\textsubscript{4} Obs4MIPs product.

Note that a resolution of 5°x5° has been selected (instead of, e.g., 1°x1°) to ensure better noise suppression (note that the underlying individual satellite retrievals are noisy and sparse due to very strict quality filtering).
The main variables as contained in the XCH$_4$ Obs4MIPs product file are:

xch4:
Satellite retrieved column-average dry-air mole fraction of atmospheric methane
(Note: typical values are $<< 1.0$ (typically close to 0.0000018) and 1.0E20 = no data)

xch4_nobs:
Number of individual XCH$_4$ Level 2 observation (per 5°x5° grid cell) used to compute the reported Level 3 XCH$_4$ monthly average value (0 = no data)

xch4_stderr:
Reported uncertainty defined as standard error of the average including single sounding noise and potential seasonal and regional biases

xch4_stddev:
Average standard deviation of the underlying XCH$_4$ Level 2 observations

time:
Time in days since 1-Jan-1990

lat:
Center latitude in degrees north (-90.0 to +90.0)

lon:
Center longitude in degrees east (-180.0 to +180.0)

3.2 Target requirements

Target requirements for satellite-derived XCO$_2$ and XCH$_4$ products are described in the Target Requirement Document (TRD) (TRD GHG, 2017). Although these requirements have been formulated for Level 2 products most of them are also valid for Level 3 products.

The Obs4MIPs products have been primarily generated for comparison with climate models, see, for example *Lauer et al., 2017*.

3.3 Data usage information

The Obs4MIPs products have been primarily generated for comparison with climate models, see, for example *Lauer et al., 2017*.
4. Level 2 mid-tropospheric CO\textsubscript{2} and CH\textsubscript{4} data products

4.1 Product description

These products contain the IASI mid-tropospheric CO\textsubscript{2} and CH\textsubscript{4} mixing ratios and the AIRS mid-tropospheric CO\textsubscript{2} mixing ratio, i.e., the description given in this section is valid for these products:

- CO\textsubscript{2}$_{\text{IASA_NLIS}}$ (product from IASI on Metop-A)
- CO\textsubscript{2}$_{\text{IASB_NLIS}}$ (product from IASI on Metop-B)
- CH\textsubscript{4}$_{\text{IASA_NLIS}}$ (product from IASI on Metop-A)
- CH\textsubscript{4}$_{\text{IASB_NLIS}}$ (product from IASI on Metop-B)
- CO\textsubscript{2}$_{\text{AIRS_NLIS}}$ (product from AIRS)

The format of these products is essentially identical as the Level 2 XCO\textsubscript{2} and XCH\textsubscript{4} data product format described in Sect. 2.

They only exceptions are:

- xco2 needs to be replaced by co2 (e.g., co2_quality_flag instead of xco2_quality_flag)
- xch4 needs to be replaced by ch4 (e.g., ch4_quality_flag instead of xch4_quality_flag)
- All other variable names are the same but note that some contain -999.0 for “no valid data” (e.g., some angles and uncertainty).

For additional details see the corresponding PUGS (see Sect. 8.5 for ANNEX E).

4.2 Target requirements

The target requirements for these products are described in the Target Requirement Document (TRD) (TRD GHG, 2017).

4.3 Data usage information

The data products can be used to study atmospheric trends and variability, for comparison with models and to obtain information on sources and sinks as shown in a number of publications such as Chevallier et al., 2005, 2009a; Crevoisier et al., 2004, 2009, 2009b, 2013; Cressot et al., 2014.
5. PUGS for existing GHG-CCI products

In this section a short overview about existing products is given. These products, which are not regenerated within C3S but made available for C3S and (for the XCO₂ and XCH₄ products) are used as input to generate the merged Level 2 EMMA and Level 3 OBS4MIPS C3S products.

5.1 CO₂_SCI_BESD product

Product: XCO₂
Level: 2
Sensor: SCIAMACHY/ENVISAT

Reference:

The product is compliant with the GHG-CCI Product Specification Document for XCO₂ and XCH₄ Level 2 data products:

Product User Guide:
5.2 CO2_SCI_WFMD and CH4_SCI_WFMD products

Products: XCO2 and XCH4
Level: 2
Sensor: SCIAMACHY/ENVISAT

Reference:

The products are compliant with the GHG-CCI Product Specification Document for XCO2 and XCH4 Level 2 data products:

Product User Guide:

5.3 CH4_SCI_IMAP product

Product: XCH4
Level: 2
Sensor: SCIAMACHY/ENVISAT

Reference:

The product is compliant with the GHG-CCI Product Specification Document for XCO2 and XCH4 Level 2 data products:

Product User Guide:
6. Data quality overview

In this section a short overview about the data quality is given. The summary is based on assessments as documented in the latest draft of document Product Quality Assessment Report (PQAR). The final version of PQAR is in preparation and will be available end of 2017. It is not expected that the information given here will change but we recommend to consult the final version of PQAR (PQAR GHG, 2017; also listed in table “Related Documents” on page 7 as document D6), where all validation / quality assessment results are presented in detail.

\textit{XCO}_2 Level 2 products:

Figure 37 shows a summary of the achieved performance in terms of single measurement precision, accuracy (in terms of spatial / spatio-temporal biases or “relative accuracy” or “relative bias”, i.e., neglecting a possible constant bias or global offset, as obtained from comparison with TCCON XCO\textsubscript{2}).

As can be seen, the achieved random error (or precision) is on the order of 1.5 ppm and better than 3 ppm for all products. This is better than the required breakthrough requirement of better than 3 ppm.

The systematic error requirement is better than 0.5 ppm. The achieved performance is around 0.5 ppm (+/- a few 0.1 ppm). The probability that this requirement has been met is 9% for product CO2_SCI_WFMD and 51% for product CO2_GOS_OCFP and in between these extreme values for the other products. Stability is very good, i.e., close to 100% for all products.

\textit{XCO}_2 Level 3 products:

The estimated accuracy is 0.3 ppm and the probability that the 0.5 ppm requirement is met is 76%.

The linear bias trend is -0.02 +/- 0.04 ppm/year and the probability that the 0.5 ppm/year requirement is met is 99%.

Overall, this product has therefore good accuracy and high stability.

\textit{XCH}_4 Level 2 products:

Figure 38 shows a summary of the achieved performance in terms of single measurement precision, accuracy (in terms of spatial / spatio-temporal biases or “relative accuracy” or “relative bias”, i.e., neglecting a possible constant bias or global offset, as obtained from comparison with TCCON XCO\textsubscript{2}).
The required single measurement random error (or precision) is better than 34 ppb (threshold) / better than 17 ppb (breakthrough). The breakthrough requirement is met for the GOSAT products and the threshold requirement is met for the EMMA product. The SCIAMACHY products do not meet the threshold requirement (due to large degradation-related noise after October 2005).

The systematic error (or “relative bias”) requirement of better than 10 ppb (threshold) is met by all GOSAT product and the EMMA product. The SCIAMACHY product accuracy is about 10 ppb. The probability that this requirement is met is nearly 100% for all products except for the SCIAMACHY products where the probability is in the range 38-55%. The stability is very high as the probability that the corresponding requirement (drift < 3 ppb/year) is higher than 90% for all products.

\emph{XCH}_4 \emph{Level 3 products}:

The estimated accuracy is 2.7 ppb and the probability that the 10 ppb requirement is met is 100%.

The linear bias trend is -0.6 +/- 0.7 ppb/year and the probability that the 3 ppmb/year requirement is met is 97%.

Overall, this product has therefore good accuracy and high stability.

\emph{Level 2 mid tropospheric products}:

Please see ANNEX E of the document Product Quality Assessment Report (PQAR).

Note in particular that there is an approximately 2 ppm difference between the mid-tropospheric CO\textsubscript{2} products retrieved IASI/Metop-A and IASI/Metop-B. The reason for this is presently unclear. Very likely the CO\textsubscript{2} product from IASI/Metop-B has a 2 ppm low bias.
Figure 37 - Overview data quality assessment results for Level 2 XCO₂ data products. The green bars refer to the “Quality Assessment / Quality control” (QA/QC) results as described in this document. The red bars refer to results obtained by the data providers (DPs), as described in separate Annexes (see Sect. 8). For “Accuracy” and “Stability” also the numerical values for the “Probability that TR is met” are given (computed as mean value if more than one value (bar) exists). Also listed (in grey on the right hand side) is the uncertainty of the reference data as used for the Target Requirement (TR) assessments.
Figure 38 - Overview data quality assessment results for Level 2 XCH2 data products. The green bars refer to the “Quality Assessment / Quality control” (QA/QC) results as described in this document. The red bars refer to results obtained by the data providers (DPs), as described in separate Annexes (see Sect. 8). For “Accuracy” and “Stability” also the numerical values for the “Probability that TR is met” are given (computed as mean value if more than one value (bar) exists). Also listed (in grey on the right hand side) is the uncertainty of the reference data as used for the Target Requirement (TR) assessments.
7. Data access information

The data products are part of the Copernicus Climate Data Store (CDS) and are available from the Copernicus Climate Change Service (C3S) website:

https://climate.copernicus.eu/
References

Buchwitz et al., 2017: ESA Climate Change Initiative (CCI) Product Validation and Intercomparison Report (PVIR) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) for data set Climate

records for essential climate variables, Bulletin of the American Meteorological Society (BAMS), 0.1175/BAMS-D-11-00254.1, pp. 12, 2013.

8. Acknowledgement

We acknowledge previous funding by the European Space Agency (ESA) via Climate Change Initiative (CCI) project GHG-CCI. This funding significantly enhanced the quality of the retrieval algorithms and related documentation. This resulted in more mature data products as needed for an operational project such as the Copernicus Climate Change Service (C3S). We also acknowledge the availability of GOSAT data products via the ESA GOSAT Third Party Mission (TPM) archive.

We are also very grateful to the GOSAT team in Japan comprising the Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE) for providing access to the GOSAT Level 1 and Level 2 data products via the GOSAT Data Archive Service (GDAS) hosted by NIES.
9. List of ANNEXes

9.1 ANNEX A: PUGS for products CO2_GOS_OCFP, CH4_GOS_OCFP and CH4_OCPR

Describes the GOSAT XCO2 and XCH4 Level 2 products generated by University of Leicester, UK.

9.2 ANNEX B: PUGS for products CO2_GOS_SRFP and CH4_GOS_SRFP

Describes the GOSAT XCO2 and XCH4 Full Physics (FP) Level 2 products generated by SRON, The Netherlands.

9.3 ANNEX C: PUGS for product CH4_GOS_SRPR

Describes the GOSAT XCH4 Proxy (PR) Level 2 product generated by SRON, The Netherlands.

9.4 ANNEX D: PUGS for products XCO2_EMMA and XCH4_EMMA

Describes the multi-sensor merged XCO2 and XCH4 Level 2 products generated by University of Bremen, Germany.

9.5 ANNEX E: PUGS for IASI CO2 and CH4 and AIRS CO2 products

Describes the mid-tropospheric CO2 and CH4 products from the IASI instrument series and AIRS generated by LMD/CNRS, France.

These ANNEXes are available from: https://climate.copernicus.eu/